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A.      Project Goals (abbreviated from the original proposal) 

Goal 1. Identify ways to model the strategic reasoning of others in the interactive POMDP (l-POMDP) 

framework. We will investigate multiple open questions: (a) How do we decide the strategy level of an 

agent without being arbitrary? (b) What strategy levels should be ascribed to the other agent? (c) How 

do we consider the possibility that the other agent is more sophisticated (has deeper beliefs)? 

Goal 2. Understand the sources of computational complexity within l-POMDPs and identify ways to 

mitigate their impact without significant losses in the optimality of the decision-maker. Motivated by 

the success of POMDP approximation schemes, we will identify the practical impediments to applying I- 

POMDPs to the large-scale settings that we have in mind. We will use this knowledge to develop a 

collection of new approximation techniques that will flexibly trade off optimality of the decisions for 

computational efficiency. These techniques will exploit notions of prescriptive similarity, decision- 

making heuristics, and the embedded structure in decision problems. The outcome of this research will 

be a collection of methods capable of generating decisions using bounded computing resources without 

significantly compromising the decision quality. 



Goal 3. Incorporate the strategic behaviors and mental models of human agents using models that are 

psychologically plausible, empirically supported, and computationally tractable. This research will 

focus on modeling the behavioral data related to the theory of mind (TOM), in order to develop 

empirically informed computational models of strategic human decision making. TOM seeks to 

understand others' minds as possessing beliefs, desires and intentions similar to one's own mind. This 

research also proposes new empirical studies that enhance the understanding of strategic human 

behavior and contribute to TOM. 

B.      Activities and Results 

Goal 1. Identify ways to model the strategic reasoning of others in the interactive POMDP (l-POMDP) 

framework. 

Research on this goal has not yet begun and will be performed in the next period. 

Goal 2.  Understand the sources of computational complexity within l-POMDPs and identify ways to 

mitigate their impact without significant losses in the optimality of the decision-maker. 

I.        Monte Carlo sampling methods for approximating l-POMDPs 

Interactive POMDPs (l-POMDPs) [Gmytrasiewicz and Doshi, 2005] are a generalization of POMDPs 
[Kaelbling et al., 1998] to multiagent settings and offer a principled framework for sequential decision 
making in uncertain multiagent settings. l-POMDPs are applicable to autonomous self-interested agents 
who locally compute what actions they should execute to optimize their preferences given what they 
believe while interacting with others with possibly conflicting objectives. 

Continuing previous research, the PI developed the first set of generally applicable methods for 
computing approximately optimal policies for the finitely nested l-POMDP framework while 
demonstrating computational savings. Since an agent's belief is defined over other agents' models, 
which may be a complex infinite space, sampling methods which are able to approximate distributions 
over large spaces to arbitrary accuracy are a promising approach. Furthermore, sampling approaches 
allow us to focus resources on the regions of the state space that are considered more likely in an 
uncertain environment, providing a strong potential for computational savings. The research adopted 
the particle filter (PF) [Doucet et al., 2001] as a point of departure, and generalized the PF to the 
multiagent setting, resulting in the interactive particle filter (l-PF). The generalization is not trivial: Other 
agents are not simply treated as automatons whose actions follow a fixed and known distribution. 
Rather, other agents are intentional - they possess beliefs, capabilities and preferences. Subsequently, 
the propagation step in the l-PF becomes more complicated than in the standard PF. In projecting the 
subject agent's belief over time, the other agent's belief must be projected, which involves predicting its 
action and anticipating its observations. Mirroring the hierarchical character of interactive beliefs, the 
interactive particle filtering involves sampling and propagation at each of the hierarchical levels of the 
beliefs. The research empirically demonstrated the ability of the l-PF to flexibly approximate the state 
estimation in l-POMDPs, and showed the computational savings obtained in comparison to a regular 
grid based implementation. However, as an identical number of particles are sampled at each nesting 



level, the total number of particles and the associated complexity continues to grow exponentially with 
the nesting level. Figure 1 illustrates the operation of the l-PF. 
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Figure 1: An illustration of the nesting in the l-PF. Colors black and gray distinguish filtering for the two agents. 
Because the propagation step involves updating the other agent's beliefs, particle filtering is performed on its 
beliefs. The filtering terminates when it reaches the level 1 nesting, where a level 0 belief update is performed for 
the other agent. 

Empirical investigation of the performance of the l-PF showed that it approximates the exact state 

estimation closely. In addition to several toy problems, experiments were performed with a UAV 

reconnaissance problem in which the task of a UAV is to perform low-altitude reconnaissance of a 

potentially hostile theater that may be populated by other agents with conflicting objectives that serve 

as ground reconnaissance targets (see Fig. 2(a)). 
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Figure 2: (a) The operating theater of the UAV /. The problem may be flexibly scaled by adding more targets and 
sectors, (b) The posterior obtained from the l-PF approaches the exact as the number of particles increase, (c) 
Comparison of the average running times of a numerical integration and l-PF implementations on the same 
platform (Xeon, 3.0GHz, 2GB RAM, Linux). 

Combining the l-PF with value iteration on sample sets provides a general way to solve finitely nested I- 
POMDPs. The approximation method is anytime and is applicable to agents that start with a prior belief 
and optimize over finite horizons. Consequently, the method finds applications for online plan 
computation.  Experimental analysis demonstrates (a) a reduction in error with increasing sample 



complexity,   and   (b)  savings  in  computation  time  when  the  approximation  technique   is  used. 
Performance of the method on the UAV reconnaissance problem is shown in Fig. 3. 
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Figure 3: (a) Anytime performance profile for the UAV reconnaissance problem for horizons 2 and 3. Notice that 
the profile flattens when the number of particles reaches 1,000 and greater, thereby indicating that the 
corresponding average reward is close to optimal, (b) Run times for obtaining a policy on a Xeon 3.0 GHz, 2.0GB 
RAM and Linux. For horizon 2, we used 500 particles while 100 particles were used for horizon 3. As we see in (a), 
rewards of policies at these numbers of particles are not much less than the converged values. 
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II.       Interactive dynamic influence diagrams and its approximations 

Enumerative   representations  of  models  often   obscure  important 

structure that is typically present in many realistic application settings. 

Graphical   models  such  as  influence  diagrams  (IDs)   [Tatman  and 

Shachter, 1990] offer a qualitative language that decomposes the state 

into  chance   (random)   variables  and   dependencies  between  the 

variables. Algorithms for solving the models exploit the conditional 

independence between variables, and often consume less time and 

space in solving the problem compared to those that operate on 

traditional    enumerative    representations.    Interactive    dynamic 

influence    diagrams    (l-DIDs)    may    be    viewed    as    graphical 

representations of l-POMDPs. They generalize DIDs (dynamic IDs), 

which are graphical counterparts of POMDPs to multiagent settings in 

the same way that l-POMDPs generalize POMDPs (Fig. 4). 
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Figure 4: The relationship between 
the four representations along two 
dimensions. The vertical dimension 
(dashed arrows) specifies the 
generalization from single agent to 
multiagent setting, while the 
horizontal dimension (solid arrows) 
is the mapping from enumerative 
to the graphical representation. 



Analogous to DIDs, l-DIDs compactly represent the decision problem by mapping various variables into 

chance, decision and utility nodes, and denoting the dependencies between variables using directed 

arcs between the corresponding nodes. However, matters are more complex when we consider 

multiagent interactions that are extended over time, where predictions about others' future actions 

must be made using models that change as the agents act and observe. As shown in Fig. 5, l-DIDs 

address this gap by allowing the representation of other agents' models as the values of a special model 

node. In addition to the model node, l-DIDs differ from DIDs by having a dashed link, called the policy 

link, between the model node and a chance node, A, , that represents the distribution over the other 

agent's actions given its model. In the absence of other agents, the model node and the chance node, A,, 

vanish and l-DIDs collapse into traditional DIDs. 

Figure 5: (a) A generic level / l-ID for agent / situated with one other agent/. The hexagon is the model node (M;>1) 
and the dashed arrow is the policy link. Members of the model node could be l-IDs themselves or IDs (m1

jhl,m
2
li-1; 

diagrams not shown here for simplicity) representing intentional models, (b) l-DID unrolled over two time 
horizons. The dotted arrow between the model nodes is the model update link. 

Both other agents' models and the original agent's beliefs over these models are updated over time. 

Specifically, the update of the agent's belief over the models of others as the agents act and receive 

observations is denoted using a special link called the model update link that connects the model nodes 

between time steps. To facilitate understanding, we explicate the semantics of the model node and the 

model update link by showing how they can be implemented using the traditional dependency links 

between the chance nodes that constitute the model nodes (Fig. 6). 



(a) (b) 
Figure 6: (a) Representing the model node and policy link using chance nodes and dependencies between them. 
The decision nodes of the lower-level l-IDs or IDs (m ,j-ym ji-x) are mapped to the corresponding chance nodes 
(A1

P A2j), which is indicated by the dotted arrows. Depending on the value of the node, Mod[/Wy ], the distribution 
of each of the chance nodes is assigned to the node A, in its CPD. (b) Representing the model update link between 
model nodes using chance nodes and dependency links between them. Notice the growth in the number of 
models in the model node at t + 1 (highlighted in bold) 

In order to illustrate the usefulness of l-DIDs, they were applied to three illustrative problems. In 
particular, they were used to demonstrate altruism and reciprocity in the public good game, the 
emergence of followership and leadership in the multiagent tiger problem, and mistrust in the online 
shopper's dilemma. 

Expectedly, l-DIDs acutely suffer from both the curses of dimensionality and history. The PI developed 
multiple methods of reducing the dimensionality of the interactive state space and mitigate the impact 
of the curse of history that afflicts the modeled agents: 

The first method, labeled as MC, limits and holds constant the number of models, 0 < KMC < M, 
where M is the possibly large number of candidate models of the other agents included in the model 
node. Using the insight that beliefs that are spatially close are likely to be behaviorally equivalent, 
the approach clusters the models of the other agents and selects representative models from each 
cluster. In this regard, the popular /r-means clustering method is used, which gives an iterative way 
to generate the clusters. Intuitively, the clusters contain models that are likely to be behaviorally 
equivalent and hence may be replaced by a subset of representative models without a significant 
loss in the optimality of the decision maker. KMC representative models are selected from the 
clusters and updated over time. Run times indicative of computational savings are shown in Fig. 7. 
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Figure 7: Run times for exactly and approximately solving l-DID for different horizons. KMC and M are equal to 
50 and 100 respectively for both approximate and exact approaches (Pentium 4, 3.0GHz, 1GB RAM, WinXP). * 
Exact solutions ran out of memory. 



The second method, labeled as DMU, significantly reduces the space of possible models of other 
agents that we need consider by discriminating between model updates. Specifically, at each time 
step, it selects only those models for updating which will result in predictive behaviors that are 
distinct from others in the updated model space. In other words, models that on update would 
result in predictions which are identical to those of existing models are not selected for updating. 
For these models, their revised probability masses are simply transferred to the existing behaviorally 
equivalent models. Intuitively, this approach improves on the previous one because it does not 
generate all possible models prior to selection at each time step; rather it results in minimal sets of 
models. In order to avoid updating all models, regions of the belief space are found so that models 
whose beliefs fall in these regions will be behaviorally equivalent on update. Note that these regions 
need not be in spatial proximity. Because obtaining the exact regions is computationally intensive, 
the method approximately obtains these regions by solving a subset of the models, 0<KDMU<M, and 
utilizing their combined policies. Fig. 8 demonstrates the empirical performance of this approach on 
a toy problem and its significant improvement over the previous approach of model clustering. 
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Figure 8: (a) Performance profiles for the multiagent tiger problem generated by executing policies obtained 
using discriminative model updates (DMU) on an l-DID of horizon 8; M0=100. As KDMU increases and epsilon 
reduces, the performance approaches that of the exact for given M0. We compare with model clustering (MC) 
for varying KMC as well. Vertical bars represent the standard deviations, (b) Notice that an l-DID solved using 
DMU requires approximately an order of magnitude less time as the MC to produce comparable solutions. 
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Goal 3. Incorporate the strategic behaviors and mental models of human agents using models that are 

psychologically plausible, empirically supported, and computationally tractable. 

I. Two level recursive reasoning by humans playing strategic, sequential games 

Strategic recursive reasoning of the form what do I think that you think that I think (and so on) arises 

naturally in multiagent settings. For example, a robotic uninhabited aerial vehicle (UAV)'s decision may 

differ if it believes that its reconnaissance target believes that it is not being spied upon in comparison to 

when the UAV believes that its target believes that it is under surveillance. Evidence of recursive 

reasoning in humans and investigations into the level of such reasoning is relevant to multiagent 

decision making in mixed settings. In particular, these results are directly applicable to computational 

frameworks such as the recursive modeling method, interactive POMDP [Gmytrasiewicz and Doshi, 

2005] and cognitive ones such as theory of mind (TOM) [Dunbar, 1998] that ascribe intentional models 

of behavior to other agents. 

Initial investigations into ascertaining the depth of strategic reasoning of humans by Stahl and Wilson 

[1995], and more recently, by Hedden and Zhang [2002] and Ficici and Pfeffer [2008] show that humans 

generally operate at only first or second level of recursive reasoning. Typically the first level, which 

attributes no recursive reasoning to others, is more prominent. Evidence of these shallow levels of 

reasoning is not surprising, as humans are limited by bounded rationality. 

This research hypothesized that a strategic setting that is realistic, competitive and includes tangible 

incentives would increase participants' tendency to attribute levels of reasoning to others that reflect 

individuals' actual level of reasoning. A large study was conducted with human subjects to test the 

hypothesis. The study utilized a task that resembled the two-player sequential game as used by Hedden 

and Zhang but made simultaneously simpler and more competitive by incorporating fixed-sum 

outcomes and monetary incentives (see Fig. 9). Subjects played the game against a computer opponent, 

although they were led to believe that the opponent was human. Different groups of subjects were 

paired against an opponent that used no recursive reasoning (zero level) and opposite one that used 

first-level reasoning. The realism of the task was also manipulated between participants, with one 

group experiencing the task described abstractly while the other experienced a task that was 

structurally identical but described using a realistic cover story involving UAV reconnaissance. 

Methodology In order to test different levels of recursive reasoning, the computer opponent (player 

//) was designed to play a game in two ways: (i) If player / chooses to move, // decides on its action by 

simply choosing between the outcomes at states B and C in Fig. 9(b) rationally. Therefore, // is a zero- 

level player and is called myopic, (ii) If player / chooses to move, the opponent decides on its action by 

reasoning what player / will do rationally. Based on the action of /, player // will select an action that 

maximizes its outcomes. Thus, player // is a first-level player, and is called predictive. 
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Figure 9: (a) A spatial visualization of the game where player / is a human intending to gather information about a 
target. Player // is a human-controlled UAV aiming to hinder / from gathering the critical information. The dashed 
arrows and probabilities indicate the chances of / gathering information or // hindering its access, (b) Centipede 
representation of our game with the outcomes as the probabilities of success of player /. It is a fixed-sum game and 
the remaining probability is the chance of success of player // (failure of player /). States of the game are indicated 
by the letters, A, B, C and D. Arrows denote the progression of play in the game. An action of move by each player 
causes a transition of the state of the game. 

Notice that the rational choice of players in the game depends on the preferential ordering of states of 
the game rather than actual values. Let a < b indicate that the player whose turn it is to play prefers 
state b over a, and because the game is purely competitive, the other player prefers state a over b. 
Games that exhibit a preference ordering ofD<:C<:B<A and A < B < C •< D for player / are trivial 
because player / will always opt to stay in the former case and move in the latter case, regardless of how 
// plays. Furthermore, consider the ordering C < A < B < D for player /. A myopic opponent will choose 
to move while a predictive opponent will stay. However, in both these cases player / will choose to 
move. Thus, games whose states display a preferential ordering of the type mentioned previously are 
not diagnostic - regardless of whether player / thinks that opponent is myopic or is predictive, / will 
select the same action precluding a diagnosis of /'s level of recursive reasoning. Of all the 24 distinct 
preferential orderings among states that are possible, only one is diagnostic: C < B < A < D. For this 
ordering, player / will move if it thinks that the opponent is myopic, otherwise / will stay if the opponent 
is thought to be predictive. Note that the game in Fig. 9 follows this preference ordering. 

Batches of participants played the game on computer terminals with each batch having an even number 
of players. Each batch was divided into two groups and members of the two groups were sent to 
different rooms. This was done to create the illusion that each subject was playing against a member of 
the other group, although the opponent was in reality a computer program. This deception was 
revealed to the subjects during debriefing. Each subject experienced an initial training phase of at least 
15 games that were trivial or not diagnostic. These games served to acquaint the participants with the 
rules and goal of the task without unduly biasing them about the behavior of the opponent. Participants 
who failed to choose the rational actions in any of the previous 5 games after the 15-game training 
phase continued with new training games until they met the criterion of no rationality errors in the 5 
most recent games. Those who failed to meet this criterion after 25 total training games did not advance 
to the test phase, and were removed from the study. In the test phase, each subject experienced 40 
games instantiated with outcome probabilities that exhibited the diagnostic preferential ordering of C < 
B •< A < D for player /. The 40 critical games were divided into 4 blocks of 10 games each. In order to 



avoid subjects developing a mental set, we interspersed these games with 40 that exhibited the 
orderings, C •< A < B < D and D -< B < A < C. The latter games not only serve to distract the participants 
but also function as "catch" trials allowing us to identify participants who may not be attending to the 
games. They also led to better balancing of stay and switch trials. Approximately half the participants 
played against myopic opponents while the remaining played against predictive ones. In each category, 
approximately half of the participants were presented with just the Centipede representation of the 
games with probabilistic payoffs and no cover story, which is labeled as the abstract version. Remaining 
participants in the category were presented with the UAV cover story and the associated picture in Fig. 
9(a), including the Centipede representation. This is labeled as the realistic version. About half of all 
participants also experienced a screen asking them what they thought the opponent would play and 
their confidence in the prediction, for some of the games. Participants received a monetary incentive of 
50 cents for every correct action that they chose in a game. This resulted in an average payout of 

approximately $30 per participant. 

Results The study spanned a period of three months from September through November 2008. As 
mentioned before, each of 162 human subjects initially played a series of 15 games in order to get 
acquainted with the fixed-sum and complete information structure, and objectives of the task at hand. 
After this initial phase, participants who continued to exhibit errors in any of the games up to 25 total 
games were eliminated. 26 participants did not progress further in the study. These participants either 
failed to understand how the game is played or exhibited excessive irrational behavior, which would 
have affected the validity of the results of this study. 
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Figure 10: (a) Mean proportion of accurate choices of the participants for all conditions across test blocks. Notice 

that subjects generally expected their opponents to play at first level far more than at zero level, (b) Count of 
participants who played myopic or predictive opponents and grouped according to different proportions of 
accurate choice. 

For each participant, we measured the proportion of times that the subject played accurately in each 
test block. We define an accurate choice as the action choice which is rational given the type of 
opponent. In Fig. 10(a), we show the mean proportion of accurate choices across all participants in each 
of the 4 groups. Two group-level findings are evident from the results in Fig. 10(a): First, the mean 
proportion of accurate choices is significantly higher when the opponent is predictive as compared to 
when it is myopic. Student t-tests with p-values < 0.0001 confirm that participants playing against 
predictive opponents have statistically significant higher proportions of accuracy compared to myopic 
opponents across all test blocks. The higher proportions of accurate choice when the opponent was 
predictive, in conjunction with lower proportions when the opponent was myopic, suggest that subjects 
predominantly displayed second-level reasoning when responding. They expected the opponent to 



reason about their subsequent play (first-level reasoning) and acted accordingly. Second-order 
reasoning appeared to be the clear majority default strategy, and those for whom first-order reasoning 
was accurate showed only partial learning over 40 critical trials. Second, no significant difference in the 
mean proportions between abstract and realistic versions of the tasks is evident across any test block 
from Fig. 10(a). This is regardless of whether the opponent is myopic or predictive. Student t-tests with 
very low p-values revealed no statistical significance in the difference between the proportions, either 
overall or in any test block. The lack of any significant difference in the accuracy of the choices seems to 
suggest that our cover story neither confounded the participants nor clarified it further in an intuitive 
sense. We speculate that the indifference is due to, (i) the Centipede representation though abstract 
being sufficiently clear to facilitate understanding of this simple game, and thus (ii) subjects playing the 
games with high accuracy leaving little room for improvement, at least in the predictive groups. Finally, 
in Fig. 10(b), we detail the number of participants whose actions across all games fell into different bins 
of proportion of accurate choice. Fig. 10(b) reveals that about 83% of the 67 participants who played 
against a myopic opponent had proportions less than 0.875. In comparison, only about 4% of the 69 
participants who played a predictive opponent exhibited such proportions of accurate choice. 

Conclusions       Data collected on the decisions of the participants indicate that: 
1. Subjects responded accurately significantly more often when the opponent displayed first-level 

reasoning than when the opponent was at zero level. Learning with a first-order opponent was 
much faster and more complete than learning with a zero-order opponent. 

2. No significant difference in the accuracy of the decisions was noticed between abstract and realistic 
task settings. 

Thus, this study reveals clear evidence that higher levels of recursive reasoning could be observed in 
humans under simpler and more competitive settings with tangible incentives. However, there is room 
for future research on whether increased realism contributes to deeper levels of strategic reasoning. 

• Personnel on this research: Adam Goodie (Co-PI), Prashant Doshi (PI), Diana Young (grad. student) 

• Publications during the grant period related to this research: 
1.    Adam Goodie, Prashant Doshi and Diana Young, "Two Level Recursive Reasoning by Humans Playing 

Sequential Fixed-Sum Games", Twenty-first InternationalJoint Conference on Artificial Intelligence (IJCAIj, 

2009, 6 pages, submitted 

C.      Planned research in the next period 

I. Modeling of strategic behavioral data using l-POMDPs 

Two sets of data on human decision making in strategic settings are available. First set is available from 
[Hedden and Zhang, 2002], and includes the decisions of 70 participants playing strategic general-sum 
games. These data show that subjects initially tend to assign a zero-level of reasoning to opponents but 
gradually learn to assign a higher level if the opponent is reasoning at that level. The second set of data 
is available from the study conducted in this project. It includes the decisions of 162 participants playing 
strategic fixed-sum games with monetary incentives. This data shows that subjects predominantly 
attributed a higher-order of recursive reasoning to others by default, and showed faster and more 
complete learning in response to higher-order reasoning opponents than in response to lower-order 
reasoning opponents. 



Because the payoff structure of the games is different in the two studies, these two sets of data 
complement each other. A computational model of this decision making should include the ability to 
model others at different levels of reasoning with differing priors and be able to learn the opponent 
model over time. This information is then translated into a decision. l-POMDPs allow all of these 
aspects. Importantly, the computational model should be sufficiently general to ascribe low levels of 
reasoning to opponents in general-sum games and switch to higher levels if the game is simpler and 
more competitive. Data from the studies will be used to inform the learning rate, the rationality of the 
decisions and levels of recursive reasoning in l-POMDPs. 

II. Studies for validation and exploration of the role of partial observability 

Two short studies will be conducted in order to replicate the results of the previous study and those 
reported by Hedden and Zhang [2002], under conditions where no monetary incentives are provided to 
the participants. These studies will serve to reinforce the validity of the results obtained previously 
under different conditions, within the context of the Co-PI and Pi's laboratory settings. 

A new study will be held in which the scenario will be made more complex, to include the possibility that 
the UAV's motions cannot be perfectly observed by the participants. This is of practical military 
importance, as the concealment of an enemy's movements is typically a priority for enemy planners. 
Data from this study will help in determining whether higher orders of recursive reasoning will continue 
to be observed under conditions of partial observability and whether partial observability affects the 
rate at which opponents' models are learnt and the completeness of the learning. 
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